
On divergent series
∗

Leonhard Euler

§1 Because convergent series are defined in that manner, that they consist of
continuously decreasing terms, that finally, if the series continues to infinity,
vanish completely; it is easily seen, that those series, whose infinitesimal
terms do not become nothing, but either stay finite or grow to infinty, have,
because they are not convergent, to be referred to the class of divergent series.
Depending on whether the last terms of the series, to which one gets in the
progression continued to infinity, are either of a finite magnitude or infinite,
one has two kinds of divergent series, both of which are further subdivided
into two subkinds, depending on whether all terms are affected by the same
sign, or the signs + and − alternate with one another. Therefore we will in
total have four species of divergent series, from which for the sake of greater
clarity I want to add some examples.

I. 1 + 1 + 1 + 1 + 1 + 1 + etc.
1
2
+

2
3
+

3
4
+

4
5
+

5
6
+

6
7
+ etc.

II. 1 − 1 + 1 − 1 + 1 − 1 + etc.
1
2
− 2

3
+

3
4
− 4

5
+

5
6
− 6

7
+ etc.

∗Original title: „De seriebus divergentibus“, first published in „Novi Commentarii academiae
scientiarum Petropolitanae 5, 1760, pp. 205-237“, reprinted in „Opera Omnia: Series 1, Volume
14, pp. 585 - 617“, Eneström-Number E247, translated by: Alexander Aycock
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III. 1 + 2 + 3 + 4 + 5 + 6 + etc.

1 + 2 + 4 + 8 + 16 + 32 + etc.

IV. 1− 2 + 3− 4 + 5 − 6 + etc.

1− 2 + 4− 8 + 16− 32 + etc.

§2 There is a great disagreement about divergent series of this kind between
the mathematicians, while some negate, others do not, that they can be
comprehended in one sum. And at first it is certainly clear, that the sums of
those series, I referred to the first class, are indeed infinite, because by actually
collecting the terms one gets to a sum greater than any number: Hence there is
no doubt, that sums of series of this kind can be exhibited by expressions like
a
0 . So the great controversy between Geometers is mainly about the remaining
three species; and the argument, which are urged by both sides to defend
their postion, are so much convincing, that neither party could be forced to
agree with the other.

§3 From the second species Leibniz at first considered this series

1− 1 + 1− 1 + 1− 1 + 1− 1 + etc.,

the sum of which he stated to be = 1
2 , while basing it on these fairly solid

arguments: Hence at first this series arises, if this fraction 1
1+a by an iterated

division in usual manner is resolved into this series

1− a + a2 − a3 + a4 − a5 + etc.

and the the value of the letter a is taken equal to the unity. Then indeed,
to further confirm this and to persuade those, who are not used to such
calculations, he gave the following argument: If this series is terminated at
some point, and the number of terms was even, then its value will be = 0, but
if the number of terms is odd, its value will be = 1: Therefore, if this series
proceds to infinity, and the number of terms can neither be seen to be even
nor odd, he concluded, that the sum can neither be = 0 nor = 1, but has a
certain mean value, being equally different from both, which is = 1

2 .

§4 To these arguments the adversaries used to object, that at first the fraction
1

1+a is only equal to the infinite series

1− a + a2 − a3 + a4 − a5 + a6 − etc.,
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if a is a fraction smaller than the unity. Hence if the division is abrupted
anywhere and the correspondig portion from the remainder is added to the
quotient, it will lead to wrong results; hence it is

1
1 + a

= 1− a + a2 − a3 + a4 − · · · ± an ∓ an+1

1 + a
,

and if the number n is put to be infinite, it is nevertheless not possible, to omit
the added fraction ∓ an+1

1+a , if it does not really vanish, what is only true in the
cases, where a < 1, and then the series converges. But in the remaining cases
one has to have regard for this mantissa ∓ an+1

1+a , and although it is affected
by the ambiguous sign ∓, depending on whether n is either even or odd, it
can therefore, if n is infinite, not be neglected, because an infinite number is
neither even nor odd, and so one has no reason, what sign is to be preferred.
Since it is absurd to believe, that there is no wohle number, not even an infinite
one, which is neither even or odd.

§5 But to this objection the ones, that assign certain sums to divergent series,
justifiably answer, that an infinite number is treated as a certain number, and
is therefore either even or odd, although it is not determined. When a series
is said, to go on to infinity, this contradicts the idea, if a certain term of the
series is treated as the last or infinitesimal one: And therefore the objection
raised before and concering the mantissa, that has to be added, or subtracted,
vanishes by itself. Because in an infinite series one never gets to an end, one
therefore never reaches such a place, where it would be necessary to add that
mantissa; and hence this mantissa can not only be neglected but also has to,
because it is never left space. And these arguments, that are urged either for
or against the divergent series, also concern the fourth species, which usually
creates no other doubts than the ones mentioned.

§6 But those, who argue against the sums of divergent series, have the
opinion, that the third species provides them with the best arguments. Hence
although the terms of these series increase continuously, one can therefore,
by actually collecting the terms, get to a sum greater than any assignable
number, that is, by definition, infinity, the defenders of sums in this species are
nevertheless forced to admit series of such a kind, whose sums are finite, and
even negative or smaller than nothing. Because the fraction 1

1−a , expanded
into a series, yields:

1 + a + a2 + a3 + a4 + etc.
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the following equations would have to hold:

− 1 = 1 + 2 + 4 + 8 + 16 + etc.

− 1
2 = 1 + 3 + 9 + 27 + 81 + etc.

what seems, quite understandably, very suspect to adversaries, because by
the addition of only affirmative terms one can never get a negative sum. And
hence the more they stress the before mentioned mantissa, that has to be
added, because, after having added it, it is perspicuous, that it will be

−1 = 1 + 2 + 4 + 8 + · · ·+ 2n +
2n+1

1− 2
,

even though n is an infinite number.

§7 Therefore the defenders of sums of divergent series, to explain this great
paradox, rather subtle, than true, state a difference between negative quantities,
while on the one hand smaller than nothing, they argue, on the other hand
they are graeter than infinity or more than infinite numbers. On the one hand
they have to accept the value of −1, whenever it is imagined, that it arises from
the subtraction of the greater number a+ 1 from the smaller a, but on the other
hand, whenever it is found to be equal to the series 1 + 2 + 4 + 8 + 16+etc.
and emerges from the division of the number +1 by the number −1; in that
case the number is of course smaller than nothing, but in this one greater than
infinity. For the sake of further confirmation they give this example of the
series of fractions

1
4

,
1
3

,
1
2

,
1
1

,
1
0

,
1
−1

,
1
−2

,
1
−3

etc.,

that, because in the first terms it is seen to grow, it is also to be seen to grow
continuously, whence they conclude, that it will be 1

−1 > 1
0 and 1

−2 > 1
−1 and

so on; and therefore, if 1
−1 is expressed by −1 and 1

0 by ∞, that −1 > ∞ and
even more −1

2 > ∞; and in this way they quite ingeniously repel the apparent
absurdity.

§8 Although this distinction seems to be an ingenious idea, it is nevertheless
hardly satisfactory for the adversaries and hence seems to violate the certitude
of analysis. Hence if the two values of one −1, if it is either = 1− 2 or − 1

−1 ,
are indeed different from each other, that they cannot be confounded, the
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certitude and the application of the rules, that we follow in calculus, are
abolished completely, what would certainly be more absurd than that, this
distinction was actually made for; but if it is 1− 2 = 1

−1 , as the precepts of
algebra postulate, the task is in no way completed, because the quantity −1
itself, that is stated to be equal to the series 1 + 2 + 4 + 8+etc., is nevertheless
smaller and the same difficulty remains. But it nevertheless seems to be true, if
we say, that the same quantities, that are smaller than nothing, can at the same
moment be seen as greater than infinity. Hence not only from algebra but
also from geometry we know, that there is a jump from positive to negative
numbers, the one at zero or nothing, the other at infinity, and therefore the
quantities form zero, as by increasing as decreasing, will return to themselves
and will finally reach the same term = 0 again, so that the quantities greater
than infinity are also smaller than nothing and the quantities smaller than
infinity also correspond to the quanities greater than nothing.

§9 But the same, who negate that these sums of divergent series, which are
usually assigned to them, are correct and justified, do not only not proffer
other suggestions, but also state, that they totally believe, that the sum of a
divergent series is imaginary. The sum of convergent series as this one

1 +
1
2
+

1
4
+

1
8
+

1
16

+
1
32

+ etc.

can only be admitted to be = 2, because, the more terms of this series we
actually add, the closer we get to two; but for divergent series the matter
behaves totally different; hence the more terms we add, the more the sums,
that arise, differ from each other and they to not get closer to a certain
determined value. From this they conclude, that not even the idea of a sum
can be transferred to divergent series and the work, that was consumed by
investigating the sums of divergent series, of those is completely useless and
contrary to the true principles of analysis.

§10 But although this difference seems to be real, none of the two parties can
be convicted of an error by the other, as often as the use of series of this kind
occurs in analyis; it has to be of a great ponderosity, that no party made any
mistakes, but the whole dissent lies only in the words and formulations. Hence
if in a calculation I get to this series 1− 1 + 1− 1 + 1− 1 + etc. and substitute
1
2 for it, certainly no one will ascribe an error to me, that nevertheless would
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occur to everybody, if I had put another value in the place of the series; hence
there can remain no doubt, that the series 1− 1 + 1− 1 + 1− 1 + etc. and
the fraction 1

2 are equivalent quantities. So the whole question seems to trace
back to the one, whether we correctly call the fraction 1

2 the sum of the series
1− 1 + 1− 1 + etc.; because those persistently deny this, although they do not
dare to deny the equivalence, it is to be feared, that they slip into wrong logic.

§11 But I believe, that the whole dispute can easily be settled, if we pay close
attention to the following. As often as in analysis we get to an either rational or
transcendental experession, we usually converted it into an appropriate series,
to which the following calculation is more conveniently applied. Hence if
infinite series occur in analysis, they arose from the expansion of a certain finite
expression, and therefore in a calculation it is always possible, to substitute
the formula, from whose expansion the series arose, for the series. Hence as
with the greatest gain the rules, to convert finite expressions, but of a less
suitable form, into infinte series, were given, vice versa the rules, by which, if
any infinte series was given, the finite expression can be found, from which it
resulted, have to be considered of the greatest use; and because this expression
can always without an error be put in place of the infinite series, it is necessary,
that the value of both is the same; hence it is caused, that there is no series,
that cannot at the same moment be considered to be equivalent to the finite
expression.

§12 Hence if we just change the usual notion of a sum in such a way, that
we say, that the sum of a certain series is the finite expression, from whose
expansion that series itself arises, all difficulties, which were mentioned by
both parties, will disappear by itself. Hence at first the expression, from which
a convergent series arises, at the same moment exhibits its sum, in the usual
sense, and if not, if the series was divergent, the question cannot be seen as
absurd any longer, if we find the finite expression, that, expanded according
to the analytical rules, produces the series itself. And because it is possible to
substitute this expression for its series in a calculation, we will not be able to
doubt, that they will even be equal to each other. Having explained this we
do not even recede from the usual notion, if we call the expression, that it is
equal to a certain sum, its sum too, as long as we do not combine the notion
with the idea of a sum for divergent series, that, the more terms are actually
collected, the closer one has to get to the value of the sum.
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§13 Having said all this in advance, I believe that there will be nobody, who
thinks, that I have to be reprehended, because I inquire into the sum of the
following series more diligently

1− 1 + 2− 6 + 24− 120 + 720− 5040 + 40320− etc.,

which is the, called this way by Wallis, hypergeometric series, just with
alternating signs. This series seems noteworthy all the more, because I have
tried several summation methods, that were quite heplful for other tasks
of this kind, without success here. At first it is certainly possible to doubt,
whether this series has a finite sum or not, because it diverges even more than
any divergent series; but that the sum of the geometric series is finite, was
clarified. But because for the geometric series the divergence is not an obstacle,
that they are summable, it seems probable, that also this hypergeometric series
has a finite sum. So one in numbers, at least approximately, looks for the value
of that finite expression, from whose expansion the given series itself arises.

§14 At first I used the method, based on this foundation: If a series of this
kind is given

s = a− b + c− d + e− f + g− h + etc.

and, after having neglected the signs of the terms a, b, c, d, e, f etc., one takes
the differences

b− a, c− b, d− c, e− d etc.

and further their differences

c− 2b + a, d− 2c + b, e− 2d + c etc.,

which are called the second differences, and in the same way searches the
third, fourth, fifth differences etc., then, if the first terms of these first, second,
third, fourth differences etc. are α, β, γ, δ etc., I say, the sum of the same given
series will be

s =
a
2
− α

4
+

β

8
− γ

16
+

δ

32
− etc.,

which series, if it is not already convergent, will nevertheless be a lot more
convergent than the given one; hence, if the same method is then again applied
to this last series, the value of the desired sum expressed by s will be found
by means of an even more convergent series.
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§15 This method has the greatest use for summing divergent series of the
second and the fourth species, whether one finally reaches constant differences
or not, as long as the divergence is not too strong: If it is

s = 1− 1 + 1− 1 + 1− etc.,

because of
a = 1, α = 0, β = 0 etc.

it will be
s =

1
2

.

If
s = 1 − 2 + 3 − 4 + 5 − 6 + etc,

diff I. 1 1 1 1 1

it will be
s =

1
2
− 1

4
=

1
4

,

as it is known from elsewhere.

If it is

s = 1 − 4 + 9 − 16 + 25 − 36 + etc.,
diff I. 3 5 7 9 11
diff II. 2 2 2 2

it will be
s =

1
2
− 3

4
+

2
8
= 0,

as it is also known.

If it is

s = 1 − 3 + 9 − 27 + 81 − 243 + etc.,
diff I. 2 6 18 54 162
diff II. 4 12 36 108
diff III. 8 24 72
diff IV. 16 48

etc.
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it will be

s =
1
2
− 2

4
+

4
8
− 8

16
+ etc. =

1
2
− 1

2
+

1
2
− 1

2
+ etc. =

1
4

sein.

§16 Now let us apply this method to the proposed series

A = 1− 1 + 2− 6 + 24− 120 + 720− 5040 + 40320− etc.,

which because of 1− 1 = 0, if it is divided by 2, changes into

A
2 = 1− 3 + 12− 60 + 360− 2520 + 20160− 181440 + etc.

2, 9, 48, 300, 2160, 17640, 161280
7, 39, 252, 1860, 15480, 143640

32, 213, 1608, 13620, 128160
181, 1395, 12012, 114540

1214, 10617, 102528
9403, 91911

82508

Hence it follows, that it will be

A
2

=
1
2
− 2

4
+

7
8
− 32

16
+

181
32
− 1214

64
+

9403
128
− 82508

256
+ etc.

or

A =
7
4
− 32

8
+

181
16
− 1214

32
+

9403
64
− 82508

128
+ etc.

18
8

,
117
16

,
852
32

,
6975

64
,

63702
128

81
16

,
618
32

,
5271
64

,
49752

128
456
32

,
4035

64
,

39210
128

3123
64

,
31140

128
24894
128
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Therefore
A =

7
8
− 18

32
+

81
128
− 456

512
+

3123
2048

− 24894
8192

+ etc.

or

A− 5
16

=
81
128
− 456

512
+

3123
2048

− 24894
8192

+ etc

132
512

,
1299
2048

,
12402
8192

771
2048

,
7206
8192

4122
8192

So
A− 5

16
=

81
256
− 132

2048
+

771
16384

− 4122
131072

or
A =

5
16

+
516
2048

+
2046

131072
+ etc =

38015
65536

= 0, 580.

Hence it is clear, that the sum of this series is nearly = 0, 580; but because of
the neglected terms it will be a little bit greater, what agrees very well with
the things, that are to be demonstrated below, where the sum of this series
will be shown to be = 0, 59634736; at the same moment it is indeed clear, that
this method is apt enough, to find the sum that exact.

§17 Next I tried it this way: Let this series be given

1 2 3 4 5 6 7 . . . n n + 1
B) 1, 2, 5, 16, 65, 326, 1957, . . . P, nP + 1

the differences are

1, 3, 11, 49, 261, 1631
2, 8, 38, 212, 1370

6, 30, 174, 1158
24, 144, 984

120, 840
720
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because the first terms of its continued differences are

1, 2, 6, 24, 120, 720 etc.,

the term corresponding to the exponent n will be

P =1 + (n− 1) + (n− 1)(n− 2) + (n− 1)(n− 2)(n− 3)

+ (n− 1)(n− 2)(n− 3)(n− 4) + etc.

Since, if n = 0, the term corresponding to the exponent 0 or preceding the
first will be

1− 1 + 2− 6 + 24− 120− etc. = A,

so that, if the term corresponding to the exponent 0 of this series could be
found, the same simultaneously would be the value or the sum of the given
series

A = 1− 1 + 2− 6 + 24− 120 + 720− etc.

Hence if that series B is inverted, that one has the series

1 2 3 4 5 6 7

C) 1,
1
2

,
1
5

,
1
16

,
1
65

,
1

326
,

1
1957

etc.

the term corresponding to the exponent 0 of this series will be = 1
A , whence

the value of A can be perceived from it. Let the single differences of this series
begin with the terms α, β, γ, δ, ε etc., of course by taking the difference in such
a way, that any term is subtracted from the preceding; the term corresponding
to the exponent n will be

1
P
= 1− (n− 1)α +

(n− 1)(n− 2)
1 · 2 β− (n− 1)(n− 2)(n− 3)

1 · 2 · 3 γ + etc.

und hence for n = 0 it will be by means of a surely converging series

1
A

= 1 + α + β + γ + δ + etc.
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It is indeed, by converting these fractions into decimals,

diff. 1 diff. 2 diff.3 diff. 4 diff. 5
1 = 1, 0000000

5000000
1
2 = 0, 5000000 2000000

3000000 375000
1
5 = 0, 2000000 1625000 −346154

1375000 721154 −511445
1

16 = 0, 0625000 903848 +165291
471154 555863 −140195

1
65 = 0, 0153846 347983 +305486

123171 250377 +131530
1

326 = 0, 0030675 97606 +173956
25565 76421 +114979

1
1957 = 0, 0005110 21185 +58977

4380 17444 +44716
0, 0000370 3741 +14261

639 3183 +11564
0, 0000091 558 +2697

81 486 +2275
0, 0000010 72 +422

9 64 +365
0, 0000001 8 +57

From this differences it will therefore be

1
A

= 1, 6517401 and A = 0, 6,

which argees to with the value found before to a high enough degree of
accuracy; but because of the fourth, fifth and some of the following differences
this method is nevertheless not certain enough.

§18 Let us take the logarithms of the single terms of the series B, that one
has this new series

1 2 3 4 5 6 7 8
D) log 1, log 2, log 5, log 16, log 65, log 326, log 1957, log 13700 etc.
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in whose continued differences taken the usual way the first terms shall be α,
β, γ, δ, ε etc., and the term corresponding to the exponent 0 of this series will
be

0− α + β− γ + δ− ε + etc.,

which will therefore will be the logarithm of the desired sum = A. The
logarithms with the continued differences are indeed the following:

diff. 1 diff. 2 diff. 3 diff. 4 diff. 5 diff. 6 diff. 7 diff. 8
0, 0000000

0, 3010300
0, 3010300 969100

0, 3979400 103000
0, 6989700 1072100 −138666

0, 5051500 −35666 +53006
1, 2041200 1036434 −85660 +19562

0, 6087934 −121326 +72568 −57744
1, 8129134 915108 −12092 −38182 +65446

0, 7003042 −134418 +34386 +7702
2, 5132176 780690 +21294 −30480

0, 7783732 −113124 +3906
3, 2915908 667566 +25200

0, 8451298 −87925
4, 1367206 579641

0, 9030939
5, 0398145
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hence it will be

diff. 1 diff. 2 diff. 3 diff. 4 diff. 5 diff. 6
log A = −0, 3010300

+2041200
+0, 0969100 +1175100

+866100 +550666
−0, 0103000 +624434 +359570

+241666 +191096 +826928
−0, 0138666 +433338 −467358 +2133994

−191672 +658454 −1307066
−0, 0053006 −225116 +839708 −2083670

+33444 −181254 +776604
+0, 0019562 −43862 +63103

+77306 −244357
+0, 0057744 +200495

−123189
+0, 0065445

whence by the method explained it will be

log
1
A

=
0, 0310300

2
+

2041200
4

+
1175100

8
+

550666
16

+
359570

32
+

826928
64

+ etc.

or
log

A
1

= 0, 7779089 and therefore A = 0, 59966,

which number may easily be calculated to be still greater than the true one.
Nevertheless even on this way one can neither certain enough nor comfortable
enough get cognition of the value A, even though this method yields an
infinite amount of ways to investigate this value; but from those the ones
certainly seem much more apt for this purpose than others.

§19 Now let us also investigate the value of this series analytically, but let us
accept it in a broader sense; it shall be

s = x− 1x2 + 2x3 − 6x4 + 24x5 − 120x5 + etc.,

which differentiated will give

ds
dx

= 1− 2x + 6xx− 24x3 + 120x4 − etc. =
x− s

xx
,
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whence it becomes
ds +

sdx
xx

=
dx
x

,

the integral of which equation, if e is taken for that number, whose hyperbolic
logarithm is = 1, will be

e−1:xs =
∫ e−1:x

x
dx and s = e1:x

∫ e−1:x

x
dx.

In the case x = 1 it will be

1− 1 + 2− 6 + 24− 120 + etc. = e
∫ e−1:x

x
dx.

Hence this series expresses the area of the curved line, whose nature between
the abscissa x and y is contained in this equation

y =
e · e−1:x

x
,

if the abscissa x is put = 1, or it will be

y =
e

e1:x · x .

But this curve is conditioned in such a way, that for x = 0 y becomes = 0; but
if x = 1, y = 1; but the intermediate values of the ordinate will indeed behave
like this, that

if it was it will then also be if it was it will then also be

x =
0
10

y = 0 x =
5
10

y =
10

5e5:5 =
2
e

x =
1
10

y =
10
e9:1 x =

6
10

y =
10

6e4:6

x =
2
10

y =
10

2e8:2 x =
7
10

y =
10

7e3:7

x =
3
10

y =
10

3e7:3 x =
8
10

y =
10

8e2:8

x =
4
10

y =
10

4e6:4 x =
9
10

y =
10

9e1:9

Hence having constructed this curve, it will instantaneously become clear, that
its area corresponding to the abscissa x = 1 is not only finite, but also smaller
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than the area of the unit square, namely = 1, but greater than its half = 1
2 .

Hence if the base x = 1 is divided up into ten equal parts and the portions of
the area are considered as trapeziods and those areas are investigated, one
will obtain this value very close to the true one of the series

1− 1 + 2− 6 + 24− 120 + etc. = A

namely

A = 0+
1

e9:1 +
1

2e8:2 +
1

3e7:3 +
1

4e6:4 +
1

5e5:5 +
1

6e4:6 +
1

7e3:7 +
1

8e2:8 +
1

9e1:9 +
1
20

.

These terms, because e = 2, 718281828, attain the following values:

1
e9:1 = 0, 00012341

1
2e8:2 = 0, 00915782

1
3e7:3 = 0, 03232399

1
4e6:4 = 0, 05578254

1
5e5:5 = 0, 07357589

1
6e4:6 = 0, 08556952

1
7e3:7 = 0, 09306272

1
8e2:8 = 0, 09735007

1
9e1:9 = 0, 09942659

1
20

= 0, 05000000

hence A = 0, 59637255

which value differs from the true one already in a hardly noticeable way. But
if the abscissa would have divided up into more parts, then this value would
have been found more precisely.
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§20 Because the sum was found as

A =
∫ e1−1:x

x
dx,

let us set
v = e1−1:x,

so that for x = 0 it also is v = 0 and for x = 1 it is v = 1; it will be 1− 1
x = log v

and x = 1
1−log v and log x = − log (1− log v), whence it becomes

dx
x

=
dv

v(1− log v)

Because it is
A =

∫ vdx
x

,

after having set x = 1 and v = 1 it will also be

A =
∫ dv

1− log v
,

having put v = 1 after the integration. But it will be by integrating by a series
term by term

A =
∫ dv

1− log v
=

v
1− log v

− 1 · v
(1− log v)2 +

1 · 2 · v
(1− log v)3

− 1 · 2 · 3 · v
(1− log v)4 +

1 · 2 · 3 · 4 · v
(1− log v)5 − etc.

and for v = 1 because of log v = 0, as we assumed, it will be

A = 1− 1 + 1 · 2− 1 · 2 · 3 + 1 · 2 · 3 · 4− 1 · 2 · 3 · 4 · 5 + etc.

Hence A will again be the area of the curve, whose nature between the abscissa
v and the ordinate y is expressed by this equation

y =
1

1− log v
,

if the abscissa v is set = 1, of course, in which case also y = 1. But it has to be
noted, that log v denotes the hyperbolic logarithm of v. Hence having divided
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the abscissa v = 1 up into ten parts again, and the ordinates in the single
points of the division will behave in this way:

if v is y will be if v is y will be

v =
0

10
, y = 0; v =

5
10

, y =
1

(1 + log 10− log 5)
;

v =
1

10
, y =

1
(1 + log 10− log 1)

; v =
6
10

, y =
1

(1 + log 10− log 6)
;

v =
2

10
, y =

1
(1 + log 10− log 2)

; v =
7
10

, y =
1

(1 + log 10− log 7)
;

v =
3

10
, y =

1
(1 + log 10− log 3)

; v =
8
10

, y =
1

(1 + log 10− log 8)
;

v =
4

10
, y =

1
(1 + log 10− log 4)

; v =
9
10

, y =
1

(1 + log 10− log 9)
;

v =
5

10
, y =

1
(1 + log 10− log 5)

; v =
10
10

, y = 1.

And therefore by approximation of the area one will again obtain the value of
the letter A to a high enough degree of accuracy.

§21 But there is another method, derived from the nature of continued
fractions, to inquire into the sum of this series, which completes the task a lot
easier and faster; hence let, by the expressing the formula more generally, be

A = 1− 1x + 2x2 − 6x3 + 24x4 − 120x5 + 720x6 − 5040x7 + etc. =
1

1 + B
;

it will be

B =
1x− 2x2 + 6x3 − 24x4 + 120x5 − 720x6 + 5040x7 − etc.

1− 1x + 2x2 − 6x3 + 24x4 − 120x5 + 720x6 − 5040x7 + etc.
=

x
1 + C

and

1 + C =
1− 1x + 2x2 − 6x3 + 24x4 − 120x5 + 720x6 − 5040x7 + etc.

1− 2x + 6x2 − 24x3 + 120x4 − 720x5 + 5040x6 − etc.
.

Therefore

C =
x− 4x2 + 18x3 − 96x4 + 600x5 − 4320x6 + etc.

1− 2x + 6x2 − 24x3 + 120x4 − 720x5 + etc.
=

x
1 + D

18



hence

D =
2x− 12x2 + 72x3 − 480x4 + 3600x5 − etc.

1− 4x + 18x2 − 96x3 + 600x4 − etc.
=

2x
1 + E

Further

E =
2x− 18x2 + 144x3 − 1200x4 + etc.

1− 6x + 36x2 − 240x3 + etc.
=

2x
1− F

and

F =
3x− 36x2 + 360x3 − etc.

1− 9x + 72x2 − 600x3 + etc.
=

3x
1 + G

.

It will be

G =
3x− 48x2 + etc.

1− 12x + 120x2 − etc.
=

3x
1 + H

.

So
H =

4x− etc
1− 16x + etc

=
4x

1 + I
.

And therefore it will become clear, that it will analogously be

I =
4x

1 + K
, K =

5x
1 + L

, L =
5x

1 + M
etc. to infinity,

so that the structure of these formulas is easily perceived. Having substituted
these values one after another it will be

1− 1x + 2x2 − 6x3 + 24x4 − 120x5 + 720x6 − 5040x7 + etc.
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A =
1

1 +
x

1 +
x

1 +
2x

1 +
2x

1 +
3x

1 +
3x

1 +
4x

1 +
4x

1 +
5x

1 +
5x

1 +
6x

1 +
6x

1 +
7x
etc.

§22 But how the value of continued fractions of this kind are to be investiga-
ted, I showed elsewhere. Because the integer parts of the single denominators
are unities of course, only the numerators are important for the calculation;
hence let x = 1 and the investigation of the sum A will be performed as
follows:

A =
0
1

,
1
1

,
1
2

,
2
3

,
4
7

,
8
13

,
20
34

,
44
73

,
124
209

,
300
501

etc.

Numerators : 1, 1, 2, 2, 3, 3, 4, 4, 5, 5 etc.

The fractions, exhibited here, get continuously closer to the true value of A of
course and they are alternately too great and too small, so that it is

A >
0
1

, A >
1
2

, A >
4
7

, A >
20
34

, A >
124
209

etc.

A <
1
1

, A <
2
3

, A <
8
13

, A <
44
73

, A <
300
501

etc.
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Hence the values of A will be in decimal numbers

too small values too great values

0, 0000000000 1, 0000000000
0, 5000000000 0, 6666666667
0, 5714285714 0, 6153846154
0, 5882352941 0, 6027397260
0, 5933001436 0, 5988023952

If now between the too great and too small values, that are respectively next to
each other, the arithemtical mean is taken, there will anew emerge alternately
too great and too small values, which are the following:

too small values to great values

0, 5000000000 0, 7500000000
0, 5833333333 0, 6190476190
0, 5934065934 0, 6018099548
0, 5954875100 0, 5980205807
0, 5960519153

and so we already get quite close to the true value of A.
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§23 But we will be able to investigate the value of this fraction part by part
in this way: Let

A =
1

1 +
1

1 +
1

1 +
2

1 +
2

1 +
3

1 +
3

1 +
4

1 +
4

1 +
5

1 +
5

1 +
6

1 +
6

1 +
7

1 +
7

1 +
8

1 +
8

1 + p
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and

p =
9

1 +
9

1 +
10

1 +
10

1 +
11

1 +
11

1 +
12

1 +
12

1 +
13

1 +
13

1 +
14

1 +
14

1 +
15

1 +
15

1 + q

and

q =
16

1 +
16

1 +
17

1 +
17

1 +
18

1 +
18

1 +
19

1 +
19

1 +
20

1 +
20

1 + r
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it will be

r =
21

1 +
21

1 +
22

1 +
22

1 +
23

1 +
23

1 + etc.
Having expanded these values, one will at first find

A =
491459820 + 139931620p
824073141 + 234662231p

,

then
p =

2381951 + 649286q
887640 + 187440q

and
q =

11437136 + 2924816r
3697925 + 643025r

.

Hence it remains, that the value of r is defined, what is certainly as difficult
as the one of A, but it suffices, to know the value of r only approximately
here; since a certain error, committed in the value of r, results in a much
smaller error in the value of q and hence again causes a lot smaller error in
the value of p; from this the error, staining the value of A, will be completely
imperceptible in the end.

§24 Because further the numerators 21, 21, 22, 22, 23 etc. that are included
in the continued fraction of r, already get closer to the ratio of equality, at
least from the beginning, one can obtain help from this to recognize its value.
Hence if all these numerators were equal, that it was

r =
21

1 +
21

1 +
21

1 +
21

1 + etc.

,

24



it would be
r =

21
1 + r

and hence
rr + r = 21

and

r =
√

85− 1
2

.

But because these denominators grow, this value will in fact be smaller. Ne-
vertheless it is possible to conclude, if three continued fractions following each

other are set to be

r =
21

1 +
21

1 +
22

1 +
22

1 +
23

1 + etc.

s =
22

1 +
22

1 +
23

1 +
23

1 +
24

1 + etc.

t =
23

1 +
23

1 +
24

1 +
24

1 +
25

1 + etc.

that the values of the quantities r, s, t will proced in an arithmetical progression
and it will be r + t = 2s; hence the value of r will be calculated to a high
enough degree of accuracy. But to extend this investigation even further, let us
take for the number 21, 22, 23 this indefinite ones a− 1, a and a + 1, that it is

r =
a− 1

1 +
a− 1

1 +
a

1 +
a

1 +
a + 1

1 + etc.

s =
a

1 +
a

1 +
a + 1

1 +
a + 1

1 +
a + 2

1 + etc.
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t =
a + 1

1 +
a + 1

1 +
a + 2

1 +
a + 2

1 +
a + 3

1 + etc.

and it will be

r =
a− 1

1 +
a− 1
1 + s

s =
a

1 +
a

1 + t

,

whence it is effected

r =
(a− 1)s + a− 1

s + a
and

s =
at + a

t + a + 1
or t =

(a + 1)s− a
a− s

,

whence it becomes

r + t =
2ss + (2aa− 2a + 1)s− a

aa− ss
= 2s;

and therefore it will be

2s3 + 2ss− (2a− 1)s− a = 0,

from which equation one may determine the value of s and further the value
of r.

§25 Now let a = 22 and we will have to solve this cubic equation

2s3 + 2ss− 43s− 22 = 0,

whose root is immemidiately discovered to lie beweteen the limits 4 and 5.
Hence let s be = 4 + u and it will be

34 = 69u + 26uu + 2u3.
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Let further u be = 0, 4 + v. It will be

u2 = 0, 16 + 0, 8v + vv and u3 = 0, 064 + 0, 48v + 1, 2v2 + v3

and hence
2, 112 = 90, 76v + 28, 4v2 + 2v3,

hence it will be approximately

v = 0, 023 and s = 4, 423.

Because it is
r =

21s + 21
s + 2

,

it will be
r =

113, 883
26, 423

= 4, 31

and hence further
q =

24043093
6469363

= 3, 71645446,

whence one obtains

p =
4794992, 85
1584252, 22

= 3, 0266600163

and from this finally

A =
914985259, 27
1534315932, 90

= 0, 5963473621372,

which value, converted into a continued fraction, yields

A =
1

1 +
1

1 +
1

2 +
1

10 +
1

1 +
1

1 +
1

4 +
1

2 +
1

2 +
1

13 +
1

4 + etc.

,
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whence the following values, exhibiting the value of A approximately, are
found

1 1 2 10 1 1 4 2 2 13

A =
0
1

,
1
1

,
1
2

,
3
5

,
31
52

,
34
57

,
65
109

,
294
493

,
653
1095

,
1600
2683

etc.

But these fraction are alternately greater and smaller than the value of A
and the last 1600

2683 is certainly too large, the excess is nevertheless smaller than
1

2683·35974 ; hence, because it is

1
A

=
2683
1600

,

it will approximately be
1
A

= 1, 676875.

§26 The method, I used above in §21 to convert this series

1− 1x + 2x2 − 6x3 + 24x4 − 120x5 + 720x6 − 5040x7 + etc.

into a continued fraction, extends further and can in the same way be applied
to this much more general series

z = 1−mx + m(m + n)x2 −m(m + n)(m + 2n)x3

+ m(m + n)(m + 2n)(m + 3n)x4 − etc.;

Then, having done the same operations, one will find

z =
1

1 +
mx

1 +
nx

1 +
(m + n)x

1 +
2nx

1 +
(m + 2n)x

1 +
3nx

1 +
(m + 3n)x

1 +
4nx

1 +
(m + 4n)x

1 +
5nx

1 + etc.

.
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But the same expression and other similar one can easily be found by means of
the theorems, I proved in my dissertations on continued fractions in Comment.
Acad. Petropol.. Then I showed, that this equation

axm−1dx = dz + cxn−m−1zdx + bxn−1zdx

is satisfied by this value

z =
axm

m +
(ac + mb)xn

m + n +
(ac− nb)xn

m + 2n +
(ac + (m + n)b)xn

m + 3n +
(ac− 2nb)xn

m + 4n +
(ac + (m + 2n)b)xn

m + 5n +
(ac− 3nb)xn

m + 6n + etc
.

.

Hence if c = 0, it will be

dz + bxn−1zdx = axm−1dx

and

ebxn :nz = a
∫

ebxn :nxm−1dx und z = ae−bxn :n
∫

ebxn :nxm−1dx

and by a series

z =
axm

m
− abxm+n

m(m + n)
+

ab2xm+2n

m(m + n)(m + 2n)
− ab3xm+3n

m(m + n)(m + 2n)(m + 3n)
+ etc.

But in this form our one we are treating is not contained.

§27 But I further found, if one has this equation

f xm+ndx = xm+1dz + axmzdx + bxnzdx + czzdx,
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that the value of z is expressed by a continued fraction of this kind

z =
f xm

b +
(mb + ab + c f )xm−n

b +
(mb− nb + c f )xm−n

b +
(2mb− nb + ab + c f )xm−n

b +
(2mb− 2nb + c f )xm−n

b +
(3mb− 2nb + ab + c f )xm−n

b +
(3mb− 3nb + c f )xm−n

b + etc.

.

Hence to be able to express the same value z in a convenient way by means of
an ordinary series, let c = 0, that one has this equation

f xm+ndx = xm+1dz + axmzdx + bxnzdx,

and by means of a continued fraction it will be

z =
f xm

b +
b(m + a)xm−n

b +
b(m− n)xm−n

b +
b(2m− n + a)xm−n

b +
b(2m− 2n)xm−n

b +
b(3m− 2n + a)xm−n

b +
b(3m− 3n)xm−n

b + etc.

.

By integration it will indeed be

xaebxn−m :(n−m)z = f
∫

ebxn−m :(m−n)xa+n−1dx

or, if m− n = k, it will be

z = f eb:kxk
x−a

∫
e−b:kxk

xa+n−1dx,
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if one integrates in such a way of course, that z vanishes for x = 0. But by an
infinite series it will be

z =
f
b

xm − (m + a)
b2 f x2m−n +

(m + a)(2m− n + a) f
b3 x3m−2n

− (m + a)(2m− n + a)(3m− 2n + a) f
b4 x4m−3n

+
(m + a)(2m− n + a)(3m− 2n + a)(4m− 3n + a) f

b5 x5m−4n − etc.

§28 To simplify these expressions and at the same moment not restrict their
generality, let us set

b = 1, f = 1, m + a = p, m− n = q,

that it is
a = p−m and n = m− q;

and one will have this differential equation

xmdx = xq+1dz + (p−m)xqzdx + zdx,

whose integral is at first

z = e1:qxq
xm−p

∫
e−18qxq

xp−q−1dx.

The same value of the quantity z will further be expressed by the following
infinite series.

z = xm − pxm+q + p(p + q)xm+2q − p(p + q)(p + 2q)xm+3q + etc.

Finally this continued fraction will be equivalent to this series

z =
xm

1 +
pxq

1 +
qxq

1 +
(p + q)xq

1 +
2qxq

1 +
(p + 2q)xq

1 +
3qxq

1 +
(p + 3q)xq

1 + etc.

,
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which expression fully agrees with that, we obtained earlier in §26, and
because there could be some doubt about the method, by which we found it,
whether the numerators proceed according to the observed law to infinity or
not, this doubt is now completely removed. Hence this consideration provided
us with a method to sum innumerable divergent series or to find values
equivalent to the same; among those that one, we treated, is a special case.

§29 But further the case, in which p = 1 and q = 2 and m = 1, seems be
worthy to be noted; hence it will be

z = e1:2xx
∫

e−1:2xxdx : xx

and the infinite series will behave like this

z = x− 1x3 + 1 · 3x5 − 1 · 3 · 5x7 + 1 · 3 · 5 · 7x9 − etc.,

which is equal to this continued fraction

z =
x

1 +
1xx

1 +
2xx

1 +
3xx

1 +
4xx

1 +
5xx

1 +
6xx

1 + etc.

.

If therefore x is set = 1, that it is

z = 1− 1 + 1 · 3− 1 · 3 · 5 + 1 · 3 · 5 · 7− 1 · 3 · 5 · 7 · 9 + etc.,

which series is strongly divergent, its value can nevertheless be expressed by
this convergent continued fraction

z =
1

1 +
1

1 +
2

1 +
3

1 +
4

1 +
5

1 + etc

32



which yields the following fraction, approximately equal to the true value of
z,

1 2 3 4 5 6 7 8 9 10 11 12

z =
0
1

,
1
1

,
1
2

,
3
4

,
6

10
,

18
26

,
48
76

,
156
232

,
492
764

,
1740
2620

,
6168
9496

,
23568
35696

etc.;

hence if it is

z =
1

1 +
1

1 +
2

1 +
3

1 +
4

1 +
5

1 +
6

1 +
7

1 +
8

1 +
9

1 +
10

1 + p

,

it will be
z =

23568 + 6168p
35696 + 9496p

or
z =

2946 + 771p
4402 + 1187p

and

p =
11

1 +
12

1 +
13

1 +
14

1 +
15

1 + etc.
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Let be
p =

11
1 + q

and q =
12

1 + r

it will be
r =

12− q
q

and since p, q, r grow uniformly, it will be

2q =
12 + 22q− qq

q + qq
and 2q3 + 3qq− 22q− 12 = 0,

where it is approximately

q = 2, 94, p = 2, 79 and z =
5097, 09
7773, 73

= 0, 65568.
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